Exon 10 skipping caused by intron 10 splice donor site mutation in cholesteryl ester transfer protein gene results in abnormal downstream splice site selection.
نویسندگان
چکیده
Cholesteryl ester transfer protein (CETP) deficiency is the most common cause of hyperalphalipoproteinemia in Japan. However, the genetic basis of this disorder has not been fully characterized. We have studied a 49-year-old Japanese male presenting with total cholesterol, HDL-cholesterol, and apolipoprotein A-I levels of 300, 236, and 233 mg/dl, respectively, and total absence of CETP activity and mass in plasma. Sequence analysis of the patient's CETP gene revealed that the splice donor consensus GT was substituted by GG in intron 10 (intron 10 splice defect) and by AT in intron 14 (intron 14 splice defect). Restriction digestion of PCR-amplified DNA using NdeI and MaeIII established that the patient was a compound heterozygote for both gene defects. Sequencing of cDNA amplified by RT-PCR from the patient's monocyte-derived macrophage RNA demonstrated abnormal splicing with deletion of exon 10 as well as alternative splicing at a native AG site located 31 nucleotides 5' of the normal splice acceptor in intron 13. Thus, the intron 10 splice defect results in exon 10 skipping and the insertion of a 31 bp fragment between exon 13 and exon 14, which contains an in frame stop codon. The presence of abnormally spliced mRNA was further confirmed by amplification of patient cDNA using CETP specific primers. Abnormal splicing of exon 14 as a result of the intron 14 splice defect was not detected, indicating potential unstable CETP mRNA derived from that mutation. These findings demonstrate that a novel splice site mutation in intron 10 of the CETP gene results in the skipping of exon 10, as well as disruption of downstream splicing at intron 13 identifying a novel mechanism leading to CETP deficiency.
منابع مشابه
Identification of a Novel Splice Site Mutation in RUNX2 Gene in a Family with Rare Autosomal Dominant Cleidocranial Dysplasia
Introduction: Pathogenic variants of RUNX2, a gene that encodes an osteoblast-specific transcription factor, have been shown as the cause of CCD, which is a rare hereditary skeletal and dental disorder with dominant mode of inheritance and a broad range of clinical variability. Due to the relative lack of clinical complications resulting in CCD, the medical diagnosis of this disorder is challen...
متن کاملOutcome of donor splice site mutations accounting for congenital afibrinogenemia reflects order of intron removal in the fibrinogen alpha gene (FGA).
Congenital afibrinogenemia (Mendelian Inheritance in Man #202400) is a rare, autosomal recessive disorder characterized by the complete absence of circulating fibrinogen. Our recent studies on the molecular basis of the disease showed that the most common genetic defect is a donor splice mutation in fibrinogen alpha gene (FGA) intron 4, IVS4+1G>T. Two other FGA donor splice mutations, in intron...
متن کاملG triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection.
Splicing of small introns in lower eucaryotes can be distinguished from vertebrate splicing by the inability of such introns to be expanded and by the inability of splice site mutations to cause exon skipping-properties suggesting that the intron rather than the exon is the unit of recognition. Vertebrates do contain small introns. To see if they possess properties similar to small introns in l...
متن کاملAntisense suppression of donor splice site mutations in the dystrophin gene transcript
We describe two donor splice site mutations, affecting dystrophin exons 16 and 45 that led to Duchenne muscular dystrophy (DMD), through catastrophic inactivation of the mRNA. These gene lesions unexpectedly resulted in the retention of the downstream introns, thereby increasing the length of the dystrophin mRNA by 20.2 and 36 kb, respectively. Splice-switching antisense oligomers targeted to e...
متن کاملExon definition may facilitate splice site selection in RNAs with multiple exons.
Interactions at the 3' end of the intron initiate spliceosome assembly and splice site selection in vertebrate pre-mRNAs. Multiple factors, including U1 small nuclear ribonucleoproteins (snRNPs), are involved in initial recognition at the 3' end of the intron. Experiments were designed to test the possibility that U1 snRNP interaction at the 3' end of the intron during early assembly functions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of lipid research
دوره 37 10 شماره
صفحات -
تاریخ انتشار 1996